ABSTRACT: Advances in micro-technologies in recent decades have enabled the production of miniature, inexpensive, integrated accelerometers and gyroscopes suitable for use in the analysis of the motion of various objects, mechanisms, and machines. This paper presents an approach for conducting experiments with a mathematical pendulum using a three-axial micromechanical accelerometer, a low-budget microcontroller, and a wireless communication module. Experiments have shown that the use of integrated digital accelerometers to study the kinetics of a mathematical pendulum offers the opportunity to perform a much more in-depth analysis of the behavior of oscillating systems compared to conventional analysis. One of the merits of the research is the comparison of the measured results with the theoretical ones, obtained from a numerical solution of a mathematical model of the system, which does not take into account any resistances. Nevertheless, the predicted pendulum accelerations measured at the bottom of the concentrated mass by the integrated accelerometer largely coincide with the theoretically obtained results. The deviations between the measured results and the theoretical ones, obtained from the numerical solution of the differential equations of the mathematical model, are within the limits of engineering accuracy.